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The highly structured modal properties of planetary gears having diametrically opposed

planets and an elastic ring gear are illustrated and mathematically proved in this work.

Two types of modes are found: rotational and translational modes. The properties of

each mode type are given mathematically. A rule for how the modes of planetary gears

presented and discussed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

While planetary gearboxes usually have equally spaced planets, some planetary gears have unequally spaced planets
due to the limitations of assembly conditions or special applications. If the first planet is located at angle zero, the possible
locations of the remaining planets are at c¼ 2pj=ðzsþzrÞ, where j is an arbitrary integer and zs, zr are the tooth numbers of
the sun and ring, respectively. In the case that equal spacing is not achievable, such as when ðzsþzrÞ=N is not an integer
where N is the number of planets, the planets are diametrically opposed in almost all applications. This is because
diametrically opposed planets have the benefits of reducing the bearing force, maintaining static and dynamic balance, and
improving the load sharing. Several helicopter planetary gears have diametrically opposed planets, as do some automotive
transmission planetary gears.

Ring gears have the largest radii in planetary gears. Often for purposes of weight reduction and increased power density,
ring gears are designed to be thin in the radial direction. Some planetary gears are designed with thin rings to introduce
compliance that improves load sharing among the planets. Thin rings with large radius deform elastically in applications
like helicopters, wind turbines, and cars. This is evident from measured data on an OH-58 helicopter planetary gear [1],
cracks observed in ring gears, and finite element analyses that show elastic deformation of the ring under operating loads.

In the literature, many studies exist on the vibration of elastic rings [2–6] and the free vibration of planetary gears
with lumped-parameter models and equally spaced planets [7–15]. Lin and Parker [12,14] analytically studied the modal
properties of planetary gears using a lumped-parameter model with consideration of both translational and rotational
motions. Wu and Parker [16] analytically investigated the vibration of planetary gears with equally spaced planets
based on an elastic-discrete model in which the ring gear was modeled as an elastic body and the remaining components
were modeled as rigid bodies. The well-defined modal properties were characterized for all possible modes. Guo and
Parker [17] studied the modal properties of compound planetary gears using a model with only rotational degrees of
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freedom. Parker and Ambarisha [18,19] showed how these modal properties are important for dynamic response
suppression. Eritenel and Parker [20] derived the modal properties for helical planetary gears including three-dimensional
motions of all gear bodies. Kiracofe and Parker [21] mathematically modeled and derived the structured modal properties
of general compound planetary gears with equally spaced or diametrically opposed planets. Recently, Bartelmus and
Zimroz examined planetary gear condition monitoring [22], which can take advantage of the modal properties derived in
this work.

The natural frequencies and vibration modes are fundamental when dealing with an existing vibration problem or
designing new systems to avoid resonant vibration, as gear engineers routinely need to do. This paper provides detailed
and rigorously derived properties of the natural frequencies and modes for planetary gears with unequally spaced planets.
The work provides knowledge engineers can use in practice as well as modal properties critical to further research on
resonant vibration response, nonlinearity, diagnostics, and the like.
2. Modeling and equations of motion

Details of the model in Fig. 1 including nomenclature, dimensionless variables, extended operators, and equations of
motion are given in [16] and adopted here. The arrows on the sun, ring, carrier, and planets shown in Fig. 1 define the
positive directions of vibration (deviations from each gear’s nominal rotation), which is not necessarily the positive
direction of nominal rotation. The motion of the ring uðy; tÞ is separated into the rigid body motion ðxr ; yr ;urÞ and the elastic
tangential deformation vðy; tÞ. The elastic radial deflection is wðy; tÞ ¼�qvðy; tÞ=qy.

The deflection of the whole system represented in the vector a is the combination of the elastic deformation of the ring
vðy; tÞ and the discrete body deflections q as

aT ¼ ½v;qT�; q¼ ½xr ; yr ;ur|fflfflfflfflffl{zfflfflfflfflffl}
pr

; xc ; yc;uc|fflfflfflfflffl{zfflfflfflfflffl}
pc

; xs; ys;us|fflfflfflffl{zfflfflfflffl}
ps

; x1;Z1;u1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p1

; . . . ; xN ;ZN ;uN|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pN

�T; (1)

where a is referred to as an extended variable, pj, (j¼ r; c; s;1; . . . ;N) represent the deflections of the ring rigid motion,
carrier, sun, and planets, and N is the number of planets.

The dimensionless eigenvalue problem for planetary gears having an elastic ring is written in extended operator form as

�o2MaþKa¼ 0; (2)

where o is a natural frequency, and M, K are extended inertia and stiffness operators defined by their action on elements of
the space of extended variables (see details in [16]). Equations associated with the individual components in the sequence
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Fig. 1. Elastic-discrete model of a planetary gear and corresponding system coordinates. The distributed springs around the ring circumference are not

shown.
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of the elastic ring, ring rigid motion, carrier, sun, and planets are

�
o2

2p
1�

q2

qy2

 !
vþkbendL1vþL2vþL3q¼ 0; (3)

�o2MrprþðKrbþ
X

n

Kn
r1Þprþ

X
n

Kn
r2pnþ

X
n

ðbrwjy ¼ cn
Þ ¼ 0; (4)

�o2McpcþðKcbþ
X

n

Kn
c1Þpcþ

X
n

Kn
c2pn ¼ 0; (5)

�o2MspsþðKsbþ
X

n

Kn
s1Þpsþ

X
n

Kn
s2pn ¼ 0; (6)

�o2MppnþðK
n
c2Þ

TpcþðK
n
r2Þ

TprþðK
n
s2Þ

TpsþKpppnþbpwjy ¼ cn
¼ 0; n¼ 1; . . . ;N: (7)

The operators L1, L2, L3, vectors br , bp, all the inertia and stiffness matrices, and variables kbend and w are given in [16]. kbend

is the dimensionless bending stiffness of the ring gear.
3. Diametrically opposed planet pair modal properties

The natural frequencies of planetary gears with equally spaced planets and an elastic ring gear are either distinct or
degenerate with multiplicity two. When the planets are diametrically opposed, it destroys the cyclic symmetry of the equal
spacing. The asymmetry of diametrically opposed planets causes all the repeated natural frequencies to split into distinct
ones. Certain modal properties remain, however, and all modes are classified into two types: rotational and translational
modes.

Fourier expansion of the elastic deformation of the ring gives

vðyÞ ¼
XJN

m ¼ 2

Vmeimyþcc; (8)

where JZ1 is an arbitrarily large integer, and m¼ 0;71 are contained in the rigid body motion of the ring pr . cc denotes
the complex conjugate of all proceeding terms and V�m ¼ V m.
3.1. Rotational modes

Rotational modes for diametrically opposed planets contain only even numbered nodal diameter components of the
elastic ring, and the translations (but not rotations) of the ring rigid motion, sun, and carrier are zero. A candidate
rotational mode has the form

a¼
XJN

m ¼ 2;4;���

Vmeimyþcc;pr ;pc ;ps;p1; . . . ;pN=2;p1; . . . ;pN=2

" #T

; (9)

ph ¼ ½0;0;uh�
T; h¼ r; c; s; pzþN=2 ¼ pz; z¼ 1; . . . ;N=2: (10)

Compared to rotational modes of equally spaced planets, deflections of the planets are no longer identical for all the
planets. Instead, they are identical for the two planets of every diametrically opposed pair. Furthermore, the elastic
deformation of the ring contains all even numbered nodal diameter components, where the equally spaced case contains
only the JN nodal diameter components.

Substituting (9) and (10) into (3), multiplying by e�ijy, and integrating from 0 to 2p yields

�
1þ j2

2
o2Vjþ

cj

2
Vjþ2

X7 JN

m ¼ 72;74;���

XN=2

n ¼ 1

ðcosarþ im sinarÞðcosar�ij sinarÞVmeiðm�jÞcn

þ2ðcosar�ij sinarÞ
XN=2

n ¼ 1

ðxn sinar�Zn cosar�unÞe
�ijcn ¼ 0; j¼ 72;74; . . . ;7 JN; (11)

cj ¼ 2pkbendj2ðj2�1Þ2þ2pkrusþ2pj2krbs; (12)

where krus and krbs are the tangential and radial distributed stiffnesses per unit length around the circumference of
the ring. Use of the specified modal properties (9) and (10) to reduce (4) yields only one equation for the ring
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rigid motion

ð2pkrus=cos2 arþN�o2=cos2 arÞurþ2
XN=2

n ¼ 1

ðxn sinar�Zn cosar�unÞþ2
XJN

m ¼ 2;4;���

XN=2

n ¼ 1

½ðcosarþ im sinarÞVmeimcnþcc� ¼ 0:

(13)

The remaining equations in (4) vanish. Similarly, (5) and (6) reduce to the following equations, respectively:

ðkcuþNkp�o2IcÞuc�kp

XN

n ¼ 1

Zn ¼ 0; (14)

ðksuþNksp�o2IsÞusþksp

XN

n ¼ 1

ð�xn sinas�Zn cosasþunÞ ¼ 0: (15)

With the modal expressions (9) and (10) and straight forward manipulation, (7) becomes

ðK1
c2Þ

TpcþðK
1
r2Þ

TprþðK
1
s2Þ

TpsþðKpp�o2MpÞpnþbp

XJN
m ¼ 2;4;���

½ðcosarþ im sinarÞVmeimcnþcc� ¼ 0; n¼ 1; . . . ;N=2: (16)

Eqs. (11)–(16) form a reduced eigenvalue problem of order JNþ3N=2þ3 as: JN equations from (11) for the ring elastic
deformation, three equations from (13) to (15) for the ring, carrier, and sun rotations, and 3N=2 equations from (16) for the
planet motions. Thus, one can construct JNþ3N=2þ3 homogeneous equations with undetermined eigenvalue o2. This
algebraic eigenvalue problem yields JNþ3N=2þ3 rotational modes when each eigenvector is substituted into (9) and (10).
Compared to the rotational modes of planetary gears with equally spaced planets [16], the number of rotational modes
increases from 6þ J to JNþ3N=2þ3. Where these additional rotational modes come from is discussed subsequently.
3.2. Translational modes

Translational modes for diametrically opposed planet pairs contain only odd numbered nodal diameter components of
the elastic ring, and the rotations (but not translations) of the ring rigid motion, sun, and carrier are zero. A candidate
translational mode has the form

a¼
XJN�1

m ¼ 3;5;���

Vmeimyþcc;pr ;pc ;ps;p1; . . . ;pN=2;�p1; . . . ;�pN=2

" #T

; (17)

ph ¼ ½xh; yh;0�
T; h¼ r; c; s; pzþN=2 ¼�pz; z¼ 1; . . . ;N=2: (18)

For translational modes with equally spaced planets, the nth planet’s motion is calculable from the arbitrarily chosen first
planet’s motion. For diametrically opposed planets, only the deflections of a diametrically opposed pair of planets are
related as pzþN=2 ¼�pz. Furthermore, the elastic deformation of the ring contains all odd numbered nodal diameter
components instead of only the JN71 nodal diameter components for equally spaced planets.

Substituting (17) and (18) into (3), multiplying by e�ijy, and integrating from 0 to 2p yields the equations governing Vj

as

�
1þ j2

2
o2Vjþ

cj

2
Vjþ2

X7 ðJN�1Þ

m ¼ 73;75;���

XN=2

n ¼ 1

ðcosarþ im sinarÞðcosar�ij sinarÞVmeiðm�jÞcn

þ2ðcosar�ij sinarÞ
XN=2

n ¼ 1

ðxn sinar�Zn cosar�unÞe
�ijcn ¼ 0; j¼ 73;75; . . . ;7 ðJN�1Þ: (19)

Substitution of (17) and (18) into (4)–(6) generates the following six equations:

ðkrxþ2krp

XN=2

n ¼ 1

sin2 crn�o2mrÞxrþ2
XN=2

n ¼ 1

sincrndn ¼ 0; (20)

ðkryþ2krp

XN=2

n ¼ 1

cos2 crn�o2mrÞyr�2
XN=2

n ¼ 1

coscrndn ¼ 0; (21)

ðkcxþNkpn�o2mcÞxcþ2kpn

XN=2

n ¼ 1

ð�zn coscnþZn sincnÞ ¼ 0; (22)
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ðkcyþNkpn�o2mcÞyc�2kpn

XN=2

n ¼ 1

ðzn sincnþZn coscnÞ ¼ 0; (23)

ðksxþ2ksp

XN=2

n ¼ 1

sin2 csn�o2msÞxsþ2ksn

XN=2

n ¼ 1

sincsnðzn sinasþZn cosas�unÞ ¼ 0; (24)

ðksyþ2ksp

XN=2

n ¼ 1

cos2 csn�o2msÞys�2ksn

XN=2

n ¼ 1

coscsnðzn sinasþZn cosas�unÞ ¼ 0; (25)

where

dn ¼�zn sinarþZn cosarþun�
XJN�1

m ¼ 3;5;���

½ðcosarþ im sinarÞVmeimcnþcc�: (26)

The specified modal expressions (17) and (18) and straightforward manipulation reduce (7) to

ðK1
c2Þ

TpcþðK
1
r2Þ

TprþðK
1
s2Þ

TpsþðKpp�o2MpÞpnþbp

XJN�1

m ¼ 3;5;���

½ðcosarþ im sinarÞVmeimcnþcc� ¼ 0; n¼ 1; . . . ;N=2: (27)

Eqs. (19)–(27) form a reduced eigenvalue problem of order JNþ3N=2þ4 as: JN�2 equations from (19) for the ring elastic
deformation, six Eqs. (20)–(25) for the ring, carrier, and sun translations, and 3N=2 Eqs. (27) for the planet motions. For
each eigensolution of this reduced eigenvalue problem, the full system mode is constructed from (17) and (18). Generally,
all the eigenvalues are distinct. Compared to the translational modes of planetary gears with equally spaced planets [16],
the number of translational modes increases from 4Jþ10 to JNþ3N=2þ4. These additional translational modes are
discussed below.
4. Relationships between modes for equally spaced and diametrically opposed planets

Four types of modes exist for planetary gears with equally spaced planets and an elastic ring: rotational, translational,
planet, and purely ring modes [16]. Rotational and purely ring modes have distinct eigenvalues. Translational modes have
degenerate eigenvalues with multiplicity two. If the number of planets is odd, all the planet modes are degenerate with
multiplicity two; otherwise, the planet modes are either degenerate with multiplicity two or distinct. Planet modes exist
only when the number of planets NZ4, and distinct planet modes always contain the jNþN=2 ðj¼ 0;1; . . .Þ nodal diameter
components. For rotational modes, the translations of the ring rigid motion, sun, and carrier are zero. For translational
modes, the rotations for the ring rigid motion, sun, and carrier are zero. The deflections of the ring rigid motion, sun, and
carrier are zero for all planet modes. Rotational, translational, planet, and purely ring modes contain the jN, jN71, jN7s,
and jN or jNþN=2 nodal diameter components of the ring, respectively, where s is selected from 2;3; . . . ; intðN=2Þ and j is an
integer.

An interesting question is: when the planet spacing changes from equally spaced (with an even number of planets) to
diametrically opposed, how do the planet and purely ring modes, which exist only for equally spaced planets, evolve into
rotational or translational modes? The rule is: If a mode for equally spaced planets has odd nodal diameter ring components

(and so pzþN=2 ¼�pz, z¼ 1; . . . ;N=2), it evolves into a translational mode when the planets are diametrically opposed; if a mode

has even nodal diameter ring components (and so pzþN=2 ¼ pz), it evolves into a rotational mode. To apply this rule, note that
for equally spaced planets with even N, the nodal diameter components of any mode are all even or all odd; for
diametrically opposed planets, translational modes have all odd nodal diameter components while rotational modes have
all even nodal diameter components.

Some clues guide the justification of the above rule. Every mode for equally spaced planets must evolve into either a
rotational mode or a translational mode as the planets deviate to the diametrically opposed case. All diametrically opposed
modes satisfy either pzþN=2 ¼�pz (translational mode) or pzþN=2 ¼ pz (rotational mode). Because equal spacing is a special
case of diametrically opposed planets, all equally spaced modes also satisfy one of these two conditions. Because of the
continuity of the modes for changes in planet spacing, equally spaced modes where pzþN=2 ¼�pz holds retain this property
when the planet spacing changes to diametrically opposed (rather than discontinuously jumping to the alternate
diametrically opposed possibility that pzþN=2 ¼ pz). One can imagine small deviations from equal spacing to clarify this
continuity argument, but the conclusion is not restricted to that case; the properties established for small deviations must
also hold for large deviations because the foregoing proof of the modal properties is not limited to small deviations. Similar
arguments apply to equally spaced modes where pzþN=2 ¼ pz holds. Because purely ring modes where pz ¼ 0 satisfy both
pzþN=2 ¼�pz and pzþN=2 ¼ pz, one cannot use the simpler criteria pzþN=2 ¼�pz or pzþN=2 ¼ pz as the conditions for the
mode evolution rule given above (as discussed subsequently).
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A pair of degenerate planet modes for equally spaced planets [16] has the form

as1 ¼
X

m ¼ jNþ s

Vmeimyþcc;q
_T

p;s

2
4

3
5T

; (28)

as2 ¼
X

m ¼ jNþ s

iVmeimyþcc; q̂
T
p;s

2
4

3
5T

; (29)

q
_T

p;s ¼ ½0;0;0; cos sc1pT
1; . . . ; cos scNpT

1�; q̂
T
p;s ¼ ½0;0;0; sin sc1pT

1; . . . ; sin scNpT
1�; (30)

where s is an integer selected from 2;3; . . . ; int½ðN�1Þ=2� and j is any integer satisfying jN7s 2 f�JN;�JNþ1; . . . ; JNg. Notice
that

cos sczþN=2 ¼ cos sðczþpÞ ¼
cos scz for even s

�cos scz for odd s

(
(31)

sin sczþN=2 ¼ sin sðczþpÞ ¼
sin scz for even s

�sin scz for odd s

(
(32)

Thus, according to (30)–(32), pzþN=2 ¼�pz holds for odd s, and pzþN=2 ¼ pz holds for even s. For distinct planet modes,
one can substitute s¼N=2 into (28) and the first of (30) to find pzþN=2 ¼�pz holds for odd N=2, and pzþN=2 ¼ pz holds
for even N=2. This indicates planet modes, whether distinct or degenerate, having odd (even) nodal diameter
components will evolve into translational (rotational) modes as the planets change from equally spaced to diametrically
opposed.

As an example, Fig. 2a shows a planet mode having jN72 (even numbered) nodal diameter components with
degenerate natural frequency o4;5 ¼ 0:5539 for equally spaced planets. The system parameters are listed in Table 3. When
the planets are diametrically opposed the natural frequency pair splits into two rotational modes. One of the split
rotational modes is shown in Fig. 2b with natural frequency o5 ¼ 0:5561.

A purely ring mode for equally spaced planets has the form

a¼ ½ðcosar sin my�m sinar cos myÞVm;0�
T; m¼

jN for odd or even N

jNþN=2 for even N

(
(33)

The deflections of the planets (and all other rigid components) are zero for a purely ring mode. Thus, using the deflections
of the planets as the condition to determine which type of mode it will evolve into does not work. A purely ring mode has
Fig. 2. Mode comparison of a planetary gear with: (a) a planet mode for equally spaced planets (o4;5 ¼ 0:5539), and (b) the corresponding rotational

mode for diametrically opposed planets (o5 ¼ 0:5561). Parameters are given in Table 3. For the diametrically opposed case, the positions of the planets

are c1 ¼ 0, c2 ¼ 2p=5, c3 ¼ 2p=3, c4 ¼ p, c5 ¼c2þp, c6 ¼c3þp.
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Fig. 3. Mode comparison of a planetary gear with: (a) a purely ring mode for equally spaced planets (o15 ¼ 1:518), and (b) the corresponding

translational mode for diametrically opposed planets (o15 ¼ 1:519). Parameters are given in Table 3. For the diametrically opposed case, the positions of

the planets are c1 ¼ 0, c2 ¼ 2p=5, c3 ¼ 2p=3, c4 ¼p, c5 ¼c2þp, c6 ¼c3þp.
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one and only one nodal diameter component. For continuity of the modes, the mode that a purely ring mode evolves into
should contain at least that specific nodal diameter component. Thus, if the purely ring mode has an odd nodal diameter
component, the corresponding diametrically opposed mode will contain that (and other) odd nodal diameter components;
this means the purely ring mode evolves into a translational mode. Similarly, if the purely ring mode has an even nodal
diameter component, it evolves into a rotational mode. The nodal diameter component in a purely ring mode is jN or
jNþN=2. Whether jN or jNþN=2 is odd or even for given j governs the mode type to which it will evolve.

Fig. 3a shows a three nodal diameter purely ring mode with o6 ¼ 1:518 for equally spaced planets. The system
parameters are listed in Table 3. The corresponding mode for diametrically opposed planets is a translational mode with
natural frequency o15 ¼ 1:519 (Fig. 3b). The deflections of the planets and sun are significant, and the dominant (but not
only) elastic ring deformation is the three nodal diameter component.

For rotational modes of equally spaced planets, the deflections of all the planets are identical [16]. This guarantees
pzþN=2 ¼ pz for all z, so they are rotational modes when the planets deviate to the diametrically opposed case. Considering
the ring nodal diameter components, a rotational mode of equally spaced planets contains only the jN nodal diameter
components. Because N is even, all the numbers of nodal diameter components are even. Thus, one can identify the
corresponding modes for diametrically opposed planets are rotational modes using the rule based on even/odd nodal
diameter components, and this agrees with the conclusion immediately above from pzþN=2 ¼ pz.

For translational modes of equally spaced planets, the planet deflections for a pair of translational modes satisfy

pn

p̂n

� �
¼

coscnI sincnI

�sincnI coscnI

" #
p1

p̂1

� �
; (34)

where I is a 3�3 identity matrix and c1 ¼ 0. Substitution of n¼N=2þz into (34) yields

pzþN=2 ¼�pz; p̂zþN=2 ¼�p̂z: (35)

According to (35), translational modes of equally spaced planets remain translational modes when the planets become
diametrically opposed. Because translational modes of equally spaced planets contain the jN71 nodal diameter
components with even N, all the ring nodal diameter components are odd. Thus, one can identify it as a translational mode
for diametrically opposed planets based on the even/odd condition as well.

In summary, for any mode of systems with equally spaced planets, whether the elastic ring nodal diameter components
are even or odd determines the mode type to which it evolves as the planets deviate to diametrically opposed.

For equally spaced or diametrically opposed planets, the total number of degrees of freedom (i.e., modes) is the same:
ð2Jþ3ÞNþ7, where J is the user-selected upper limit in (8). For equally spaced planets with even N, the numbers of modes
for rotational, translational, planet and purely ring modes are J+6, 4J+10, (2JN�7J)+(3N�9), and 2J, respectively. For
diametrically opposed planets (obviously with even N), all the modes fall into two types: JN+3N/2+3 rotational modes plus
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Table 1
Modal property comparison of planetary gears for four different cases.

Elastic-discrete model Lumped-parameter model

Equally spaced

(even N)

Diametrically opposed Equally spaced (even

or odd N)

Diametrically opposed

Rotational mode

Multiplicity 1 1 1 1

Number 6+ J JN+3N/2+3 6 6

Ring nodal diameter components jN 2j 0 nodal diameter

(pure rotation)

0 nodal diameter

(pure rotation)

Planet deflections pn ¼ p1 pnþN=2 ¼ pn pn ¼ p1 pn ¼ p1

Translational mode

Multiplicity 2 1 2 1

Number 10+4J JN+3N/2+4 12 12

Ring nodal diameter components jN71 2j+1 1 nodal diameter

(pure translation)

1 nodal diameter

(pure translation)

Planet deflections Eq. (34) pnþN=2 ¼�pn Eq. (34) pn sinc2 ¼ p1 sinðc2�cnÞþp1 sincn

Planet mode

Multiplicity 2 or 1 N�3 N�3

Number 2JN�7J+3N�9 3N�9 3N�9

Ring nodal diameter components jN7s
s¼ 2; . . . ;N=2

� � �

Planet deflections pn ¼wnp1 pn ¼wnp1 pn ¼wnp1

Number of purely ring modes 2J � � �

� denotes not applicable, and j¼ 0;1;2; . . ..

Table 2
Number of planet and purely ring modes that evolve into rotational or translational modes when the planets deviate from equally spaced to diametrically

opposed.

N/2 Planet modes Purely ring modes

Even ðN=2�2Þð2Jþ3Þ-t 2J-r

ðN=2�1Þð2Jþ3Þ�J-r

Odd ðN=2�2Þð2Jþ3Þ�J-t J-t

ðN=2�1Þð2Jþ3Þ-r J-r

Designations t, r denote translational and rotational modes for diametrically opposed planets.
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JN+3N/2+4 translational modes. The total number of rotational and translational modes equals the total degrees of
freedom, so no other mode types are possible.

Table 1 summarizes the modal properties of four cases of planetary gears with either equally spaced or diametrically
opposed planets based on the elastic-discrete [16] and lumped-parameter models [12,14]. For the lumped-parameter model,
when the planets change from equally spaced to diametrically opposed, most of the modal properties in Table 1 are retained.
For the elastic-discrete model, the changes are more dramatic: the number of mode types reduces from four to two and the
properties of each mode type change. Compared to the other three cases in Table 1, a planetary gear with an elastic-discrete
model and diametrically opposed planets is the only case without any planet modes. In the lumped-parameter model, however,
no matter if the planets are equally spaced or diametrically opposed 3N�9 planet modes are always present.

The number of planet and purely ring modes that evolve into rotational or translational modes can be determined.
According to [16], a pair of degenerate planet modes is given in (28)–(30) with s selected from 2;3; . . . ;N=2�1 when the
number of planets N is even. For each s in ½2;N=2�1�, there are 2Jþ3 pairs of degenerate planet modes. For s¼N=2, there
are J+3 distinct planet modes [16]. To identify how many of these planet modes evolve into either rotational or
translational modes, we must consider two cases.

Case 1: When N=2 is even, N=2�1 is odd. Accordingly, half of the s in ½2;N=2�1� are odd and the other half are even.
Thus, ðN=2�2Þð2Jþ3Þ planet modes contain odd nodal diameter components, and they evolve into translational modes;
ðN=2�2Þð2Jþ3Þþ Jþ3 planet modes evolve into rotational modes, where the additional J+3 modes come from the distinct
planet modes.

Case 2: When N=2 is odd, there are ðN�2Þ=4 even s and ðN�6Þ=4 odd s for s in ½2;N=2�1�. Thus,
½ðN�2Þ=4�ð2Jþ3Þð2Þ ¼ ðN=2�1Þð2Jþ3Þ degenerate planet modes contain even nodal diameter components, and they evolve
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Table 3
Dimensional parameters of a planetary gear with six equally spaced planets.

Inertias (kg) Ir=r2
r ¼ 8:891, Ic=r2

c ¼ 6:000, Is=r2
s ¼ 2:500, Ip=r2

p ¼ 2:000

Masses (kg) mr ¼ 7:350, mc ¼ 5:430, ms ¼ 0:400, mp ¼ 1:000

Stiffnesses (N/m) krp ¼ ksp ¼ 100� 106, krbs ¼ krus ¼ 0, kbend ¼ 4� 106, ks ¼ 10� 106, ksu ¼ 50� 106, kc ¼ kcu ¼ 500� 109, kp ¼ 200� 106

Pressure angle (deg) ar ¼ as ¼ 24:60
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Fig. 4. Dimensionless natural frequencies of planetary gears when the position of one pair of diametrically opposed planets deviates an angle y from the

equally spaced position. The six-planet system is defined in Table 3. For equally spaced planets (y=0), the designations R, T denote rotational and

translational modes, and the designations P2, P3 denote planet modes having jN72, jN73 nodal diameter components for equally spaced planets. The

designations r, t denote rotational and translational modes for diametrically opposed planets.
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into rotational modes; ðN=2�3Þð2Jþ3Þþ Jþ3 planet modes evolve into translational modes, where J+3 modes come from
the distinct planet modes.

According to (33), for even N there are 2J purely ring modes. When N=2 is even, all the purely ring modes have an even
nodal diameter component, thus they evolve into rotational modes. When N=2 is odd, half of the purely ring mode evolve
into rotational modes, and the other half evolve into translational modes.

Table 2 lists the number of planet and purely ring modes evolving into translational and rotational modes as the planets
deviate from equally spaced to diametrically opposed. As indicated in Table 2, whether N=2 is even or odd, there are the
same number, ðN=2�1Þð2Jþ3Þþ J, of total planet and purely ring modes evolving into rotational modes. Similarly, whether
N=2 is even or odd, there are the same number, ðN=2�2Þð2Jþ3Þ, of total planet and purely ring modes evolving into
translational modes.
5. Example

As an example, a planetary gear with six equally spaced planets is analyzed. The system parameters are given in Table 3.
One of the three pairs of diametrically opposed planets deviates from the equally spaced position by an angle y.
Fig. 4 shows the effects of y on the natural frequencies. The designations R, T denote rotational and translational modes,
and P2, P3 denote planet modes having jN72, jN73 nodal diameter components for equally spaced planets, respectively.
From Fig. 4 one can numerically verify how each type of mode evolves when the planets deviate from equally spaced to
diametrically opposed. Natural frequency splitting is observed, such as for the translational modes o6;7 and planet modes
o4;5 and o10;11. Note that the limiting case of y¼ 7p=3 is not practically meaningful because two pairs of diametrically
opposed planets lie along the same diameter.
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In the elastic-discrete model, the elastic deformation of the ring is highly coupled with the positions of the planets.
Thus, deviation of planet positions from equal spacing yields significant changes to some natural frequencies (Fig. 4). For
certain rotational modes with small elastic ring deformation, the natural frequencies are insensitive to y (see o3 in Fig. 4).
For rotational modes in the lumped-parameter, rigid ring model, all rotational modes are independent of the positions of
the planets [14]. This is because changing planet positions does not change the projection of mesh stiffnesses in the
direction tangent to the ring gear. For the elastic-discrete model, the ring-planet mesh stiffnesses have a radial component
that couples to elastic ring deformation. Thus, rotational modes for the elastic-discrete model are affected by planet
position, with greater effect for modes with large relative amplitude of ring deformation. Translational modes are, in
general, more sensitive to planet position. They experience the same ring-planet mesh stiffness interaction with ring
deformation as above for rotational modes. In addition, changing the positions of the planets alters the support and mesh
stiffness forces between the sun, planets, carrier, and ring in the horizontal and vertical directions, and this directly affects
the translational modes even if the elastic deformation of the ring is negligible.

6. Conclusions

This work analytically identifies the modal properties of planetary gears with diametrically opposed planets and an
elastic ring gear. The elastic-discrete model represents the ring gear as an elastic body free to deform radially while the
remaining components are rigid bodies. The elastic continuum ring model leads to an infinite-dimensional system.
Relationships between the modal properties of planetary gears with equally spaced and diametrically opposed planets are
examined in detail. The following conclusions are obtained:
1.
 All the modes are classified into rotational or translational modes with distinct natural frequencies. Closed-form
expressions are provided for the structure of each mode type. A rotational mode contains only even numbered nodal
diameter components of the elastic ring, and a translational mode contains only odd numbered nodal diameter
components. The planet and purely ring modes present when the planets are equally spaced no longer exist.
2.
 For rotational modes, the translations for the ring rigid motion, sun, and carrier are zero. For translational modes, the
rotations for the ring rigid motion, sun, and carrier are zero. The motions (displacements and rotation) of the two
planets of every diametrically opposed pair are identical for rotational modes and opposite for translational modes.
3.
 All the planet and purely ring modes of equally spaced planets evolve into either rotational or translational modes when
the planets change to diametrically opposed. The rule governing this modal evolution is: any mode for equally spaced
planets having odd (even) nodal diameter components evolves into a translational (rotational) mode as the planets
deviate to diametrically opposed. The exact numbers of planet and purely ring modes evolving to each of rotational and
translational modes are given.
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